Important Equations in Physics for IGCSE course

General Physics:

Gei	neral Physics:		
1	For constant motion:	$v = \frac{s}{t}$	'v' is the velocity in m/s, 's' is the distance or displacement in meters and 't' is the time in sec
2	For acceleration 'a'	$a = \frac{v - u}{t}$	u is the initial velocity, v is the final velocity and t is the time
3	Graph: in velocity-time graph the area under the graph is the total distance covered		$aaped\ graph = base imes height$ $d\ graph = \frac{1}{2} imes base imes height$
4	Weight is the force of gravity and mass is the amount of matter	$w = m \times g$	w is the weight in newton (N), m is the mass in kg and g is acceleration due to gravity = 10 m/s^2
5	Density ' ρ ' in kg/m^3 (ρ is the rhoo)	$ \rho = \frac{m}{V} $	m is the mass and V is the volume
6	Force F in newtons (N)	$F = m \times a$	m is the mass and a is acceleration
7	Terminal Velocity: falling with air resistance		ard) = air resistance (upwards)
8	Hooke's Law	$F = k \times x$	F is the force, x is the extension in meters and k is the spring constant
9	Moment of a force in N.m (also turning effect)	$moment\ of\ force = F \times d$	d is the perpendicular distance from the pivot and F is the force
10	Law of moment or equilibrium		= total anticlockwise moment $d_1 = F_2 \times d_2$
11	Conditions of Equilibrium		on y-axis= zero, net moment=zero
11	Work done W joules (J)	$W = F \times d$	F is the force and d is the distance covered by an object same direction
12	Kinetic Energy E_k in joules (J)	$E_k = \frac{1}{2} \times m \times v^2$	m is the mass(kg) and v is the velocity (m/s)
13	Potential Energy ΔE_p in joules (J)	$\Delta E_p = m \times g \times \Delta h$	m is mass (kg) and g is gravity and Δh is the height from the ground
14	Law of conservation of energy:	Loss of $E_p = gain \ of \ E_k$ $m \times g \times h = \frac{1}{2} \times m \times v^2$	
15	Power in watts (W)	$P = rac{work\ done}{time\ taken}$ $P = rac{Energy\ transfer}{time\ taken}$	Power is the rate of doing work or rate of transferring the energy from one form to another
16	Efficiency:	Ffficiency = usefi	ul energy output ul energy input × 100
17	Pressure p in pascal (Pa)	$p = \frac{F}{A}$	F is the force in newton (N) and A is the area in m ²
18	Pressure p due to liquid	$p = \rho \times g \times h$	ρ is the density in kg/m ³ , h is the height or depth of liquid in meters and g is the gravity
19	Atmospheric pressure	P = 760mmHg = 76cm Hg = 1.01x1	-
20	Energy source	renewable can be reused Hydroelectric eg dam, waterfall Geothermal eg from earth's rock Solar eg with solar cell	non-renewable cannot be reused Chemical energy eg petrol, gas Nuclear fission eg from uranium
		Wind energy eg wind power station Tidal/wave energy eg tide in ocean	,

Thermal Physics:

1	Poyle's law Pressure and volume	1	V- constar	a #	n and n are the two pressures in Da					
1	Boyle's law: Pressure and volume	pV=constan			p_1 and p_2 are the two pressures in Pa					
	are inversely proportional $p \propto V$	$p_1 \times V_1 = p_2 \times V$								
2	Thermal Expansion (Linear)	$\Delta L = \alpha \times L_o \times \Delta \theta$ $L_o \text{ is the original length in meters,}$								
			_							
			_	-	rature in °C,					
		ΔL is the change in length in meters $(L_I$ - $L_o)$ and								
		α is the li	inear expa		of the material					
3	Thermal Expansion (Cubical)	$\Delta V = \gamma$	Vo AA	V_o is	the original volume in m^3 ,					
		$\Delta \mathbf{v} - \mathbf{y}$	VO ZO		the change in temperature in ${}^{\circ}C, \Delta V$ is					
		γ =	3α	the c	hange in volume in m^3 (V_I - V_o) and					
				y is th	γ is the cubical expansivity of the material.					
4	Charle's Law:	V		V is t	The volume in m^3 and T is the temperature					
	Volume is directly proportional to	$\frac{1}{T} = co$		in ke	lvin(K).					
	absolute temperature	$\frac{V_1}{T_1} =$	V_2							
	$V \propto T$	$T_1 = T_1$	$\overline{T_2}$							
5	Pressure Law:	$\frac{p}{T} = cor$	natant	p is t	he pressure in Pa and T is the					
	Pressure of gas is directly	$\frac{1}{T}$	nstant	temp	erature in Kelvin (K).					
	proportional to the absolute	$\frac{p_1}{}=$	$=\frac{p_2}{}$	_						
	$temperature p \propto T$	T_1	T_2							
6	Gas Law (combining above laws)	p_1V_1	p_2V_2	In the	ermal physics the symbol θ is used for					
	pV	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$ $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$		celsii	us scale and T is used for kelvin scale.					
	$\frac{pV}{T} = constant$			-						
7	Specific Heat Capacity:		Q	c is the specific heat capacity in $J/(kg {}^{\circ}C)$,						
	Amount of heat energy required to	$c = \frac{Q}{m \times \Delta \theta}$		$\times \Delta \theta$ Q is the heat energy supplied in joules (J),						
	raise the temperature of 1 kg mass			m is the mass in kg and $\Delta \theta$ is the change in						
	<i>by</i> 1° <i>C</i> .			temp	temperature					
8	Thermal Capacity: amount of heat	Thermal	capacity=1	$m \times c$	The unit of thermal capacity is $J/^{\circ}C$.					
	require to raise the temperature of	Th owns	l capacity	Q						
	a substance of any mass by 1°C	Therma								
9	Specific latent heat of fusion	Q	L_f is the s	pecifi	c latent heat of fusion in J/kg or J/g,					
	(from solid to liquid)	$L_f = \frac{Q}{m}$	Q is the t	otal h	eat in joules (J) ,					
			m is the n	nass o	f liquid change from solid in kg or g.					
10	Specific latent heat of vaporization	$L_v = \frac{Q}{m}$			c latent heat of vaporization in J/kg or					
	(from liquid to vapour)	$L_v - \overline{m}$	J/g, Q is	the tot	tal heat in joules (J), m is the mass of					
			vapour ci	hange	from liquid in kg or g.					
11	Thermal or heat transfer		conductio							
		_	_		ction and also convection current					
				_	ip and cold matter comes down)					
			n = radiat							
12	Emitters and Radiators				l emitter, good radiator, bad reflector					
		Bright shiny surface = poor emitter, poor radiator, good reflector								
13	Another name for heat radiation	Infrared radiation or radiant heat								
14	Melting point	Change solid into liquid, energy weaken the molecular bond, no								
		change in temperature, molecules move around each other								
15	Boiling point	Change liquid into gas, energy break molecular bond and								
		molecules escape the liquid, average kinetic energy increase, no								
		change in temperature, molecule are free to move								
16	Condensation	Change gas to liquid, energy release, bonds become stronger								
17	Solidification	Change liquid to solid, energy release bonds become very strong								
18	Evaporation	Change l	Change liquid to gas at any temperature, temperature of liquid							
		decreases	s, happens	only o	at the surface					
		•								

Waves, light and sound:

	ves, light and sound:											
1	Wave motion					place to a						
2	Frequency f		Number of cycle or waves in one second, unit hertz (Hz)									
3	Wavelength λ	Length	Length of one complete waves, unit, meters (m)									
4	Amplitude a	Maxim	Maximum displacement of medium from its mean position, meters									
5	wavefront	A line	A line on which the disturbance of all the particles are at same point from									
			the central position eg a crest of a wave is a wavefront									
6	Wave equation 1	v	$v = f \times \lambda$ v is the speed of wave in m/s, f i (hertz) Hz, λ is the wavelength i									
7	Wave equation 2		$f = \frac{1}{T}$ T is the time period of wave in seconds									
8	Movement of particles			vaves=>	> back	and forth	para	ıllel to	the dir	ectio	n of the waves	
	of the medium	_				dicular to	-				-	
9	Law of reflection					idence i =						
				0	-	.gle i° =	_	-	3			
10	Refraction	From ligh	nter to d	enser m	edium -	→ light be	nd to	wards	the nor	mal		
						→ light be					al	
11	Refractive index n		sin ∠i _o	air or va	cuum		sp	eed of	^c light	in a	ir or vacuum	
	(Refractive index	$n_{glass} =$	sir	ı Zr _{alas}	-	n_{glass} :	= —	snee	ed of l	li aht	ir or vacuum in glass	
	has not units)			y ius.	·			Spec	ou o, c		· ··· g····s	
12	Diffraction	Bending	of wave	s aroun	d the ed	dges of a	hard	surfac	:e			
13										uency	y for example	
	_	by using	prism							_		
14	Image from a plane mir		tual, up mirror		ame siz	e and late	erally	v invert	ted and	l sam	e distance from	
15	Image from a convex le	ns When close: virtual, enlarge, upright										
1.0	T C		When far: real, small, upside down									
16 17	Image from a concave l			right, si		4 - 1: -	1. 4	1:	41 :	: 1		
	Critical angle	wh	ich the i	reflected	l angle	is 90°, is	calle	ed criti	cal ang	gle.	ent angle at	
18	Total internal reflection (TIR)		_			ser to lig alled (TL					cted ray bend	
19	Electromagnetic Spectr	um: trave	el in vac	cuum, os	scillatir	ig electric	ana	l magne	etic fiel	lds		
	$\leftarrow \lambda$ (decrease) and f (i	ncrease)				Ĵ	l (inc	reases) and f	(dec	rease)→	
	Gammas X-Rays	Ulra	ı violet	Visi	ble	Infrare	ed	Mi	cro	Radio waves		
	rays		ays) rays	rays			ves			
20	Gamma rays: for killing	g cancer	cells								ns one colour	
	X-rays: in medicine										ular pain	
	UV rays: for sun tan an	d steriliz	ation								mobile phones	
2.1	of medical instruments	* **	. 1 -			: radio ar	_					
21	Colours of visible light VIBGYO R wavelengths		m	digo	<u>B</u> lue	<u>G</u> reen	$\frac{Y}{Y}$	ellow	<u>O</u> rai	nge_	<u>R</u> ed 7×10 ⁻⁷ m	
22	Speed of light waves or	In a	<i>iir: 3×1</i>	$10^8 m/s$		In wate				In	ı glass:	
	electromagnetic waves					2.25×10	⁸ m/s			2>	$< 10^8 m/s$	
23	Light wave			lectromo								
24	Sound wave are	particles of the medium come close to each other \rightarrow compression								ession		
	longitudinal waves	partic				e away –		•				
25	Echo	$v = \frac{2 \times d}{v}$ v is the speed of sound waves,										
		t a is the distance in meters between source and the										
		reflection surface and t is the time for echo										
26	Properties of sound	<u>Pitch</u> is similar to the frequency of the wave										
	waves	Loudi		imilar t		mplitude						
27	Speed of sound waves						Steel:					
		3	30-340	m/s	14	00 m/s		5000 m	n/s	60	000–7000 m/s	

Electricity and magnetism:

	tricity and magnetism:	A.,	7	. , 1 . 1	1 1 1 1,					
1	Ferrous Materials	Attracted by magnet and co		iron, steel, nickel and cobalt (iron temporary and steel permanent)						
2	Non-Comment of the	magnetized								
	Non-ferrous materials	Not attracted by magnet an cannot be magnetized	ia c	copper, silver, aluminum, wood, glass						
3	Electric field	The space or region aroun	d a charge v	vhere a unit cha	rge experience force					
		Direction is outward from								
4	Electric field intensity	Amount force exerted by the	ne l	E is the electric	field intensity in N/C					
		charge on a unit charge (q) placed	$E = \frac{F}{-}$						
		at a point in the field			$L = \frac{-}{q}$					
5	Current (I): Rate of flow	$I = \frac{Q}{t}$	1	I is the current in amperes (A),						
	of charges in conductor	$I = \frac{1}{t}$	Ç) is the charge i	in coulombs (C)					
				is the time in se	econds (s)					
6	Current	In circuits the current alwa								
7	Ohms law	Voltage across the resistor	· is V	is the voltage	in volts (V),					
		directly proportional to cu	rrent, 1	is the current in	n amperes (A) and					
		$V \ltimes I$ provided if the physic	cal I	R is resistance in	n ohms (Ω)					
		conditions remains same $\frac{V}{V}$	= R							
8	Voltage (potential	Energy per unit charge	6	is the charge i	n coulombs (C),					
	difference)			is the voltage						
	333	$V = \frac{Energy}{charge} = \frac{E}{q}$	$\overline{}$	Energy is in joul						
9	E.M.F.	$E.M.F. = lost \ volts \ inside \ t$	he nower so							
	Electromotive force	EMF=Ir+IR	ne power so		potential angerence					
10	Resistance and resistivity			R is the resistance a resistor,						
		$R = \rho \frac{L}{A}$		L is the length of a resistor in meters						
		ρ is the resistivity of resistory			cross-section of a					
		,		resistor in m ²						
11	Circuit	In series circuit→ the curr			ige divides					
		In parallel circuit \rightarrow the ve								
12	Resistance in series	$R = R_1 + R_2 + R_3$	3	n n n	I.D.					
13	Resistance in parallel	1 1 1	1	R , R_1 , R_2 and R_3 are resistances of						
	-	$\overline{R} = \overline{R_1} + \overline{R_2} + \overline{R}$	<u> </u>	resi	stors in ohms					
14	Potential divider or	V_1 R_1	3							
	potentiometer	$\frac{1}{V_2} = \frac{1}{R_2}$								
15	Potential divider	R_2			R_1					
		$V_2 = \left(\frac{2}{R_1 + R_2}\right) \times$	V	$V_1 =$	$\left(\frac{1}{R_1 + R_2}\right) \times V$					
16	Power	$R_1 + R_2$	V^2	$V_1 = \left(\frac{R_1}{R_1 + R_2}\right) \times V$ $P \text{ is the power in watts } (W)$ $The unit of energy is joules } (J)$						
10	Tower	$P = I \times V \mid P = I^2 \times R$	$P = \frac{r}{R}$	1 is the power	in waits (W)					
17	Power	Energy		The unit of end	ergy is joules (J)					
		$P = {time}$, and the second						
18	Diode	Semiconductor device cu	rrent pass o	nly in one direc	tion, rectifier					
19	Transistor	Semiconductor device work	ks as a switc	h , collector, ba	ise, emitter					
20	Light dependent resistor	LED resistor depend upon	light, bright	ness increases i	the resistance decrease					
21	Thermistor	Resistor depend upon temperature, temperature increase resistance decre								
22	Capacitor	Parallel conductor with insulator in between to store charges								
23	Relay	Electromagnetic switching	device							
24	Fleming's RH or LH rule	thu <u>M</u> b		finger	se <u>C</u> ond finger					
	_	<u> </u>		of magnetic field Direction of curren						
25	Transformer	· · · · · · · · · · · · · · · · · · ·		he voltages; n_p and n_s are the no of turn.						
				d secondary coils						
		, s , s	,							

26	Transformer		P_{p}	$= P_s$		Power in primary coil =Power in secondary coil									
		I_{p}		$=I_{S}$	$\langle V_s \rangle$	I_p and I_s the currents in primary and secondary coil									
			$\frac{V_p}{V_s}$	$=\frac{I_s}{I_p}$											
27	E.M induction	Emf or current is induced in a conductor when it cuts the magnetic field lines													
28	a.c. generator	Produce current, use Fleming's right hand rule													
29	d.c. motor	Consume current, use Fleming's left hand rule													
30	Logic Gates	AN	VD G	ate	0	R Ga	R Gate NOT Gate 1			NAND Gate		NOR Gate			
		1	2	out	1	2	out	in	out	1	2	out	1	2	out
		0	0	0	0	0	0	0	1	0	0	1	0	0	1
		0	1	0	0	1	1	1	0	0	1	1	0	1	0
		1	0	0	1	0	1			1	0	1	1	0	0
		1	1	1	1	1	1			1	1	0	1	1	0
31	Cathode rays	Stream of electrons emitted from heated metal (cathode). This process is													
		called thermionic emission.													
32	CRO	Horizontal or y-plates for vertical movement of electron beam													
		Tim	ebase	or x-	plate	s for i	horiza	ontal mo	vement						

Atomic Physics:

1	Alpha particles α-particles	Double positive charge Helium nucleus Stopped by paper Highest ionization potential	
2	Beta-particles β-particles	Single negative charge Fast moving electrons Stopped by aluminum Less ionization potential	
3	Gamma-particles γ-rays	No charge Electromagnetic radiation Only stopped by thick a sheet of lead Least ionization potential	
4	Half-life	Time in which the activity or mass of substance be	ecomes half
5	Atomic symbol	${}^{A}_{Z}X$	A is the total no of protons and neutrons Z is the total no of protons
6	Isotopes	Same number of protons but different number of neutrons	